www.universalcurrentaffairs.com

James Webb Space Telescope sees 1st exoplanet raining sand alongside 'sandcastle' partner world.

Noted sand-hater Anakin Skywalker may want to cross the planetary system of YSES-1 off his list of potential summer vacation locations.

Using the James Webb Space Telescope (JWST), astronomers have discovered a planetary system orbiting a youthful star located 300 light-years away. The system's two planets, YSES-1 b and YSES-1 c, are packed with coarse, rough, and frankly irritating silica material (we get you, Anakin, it does get everywhere).

Astronomers say this discovery around a star that is just 16.7 million years old could hint at how the planets and moons of our 4.6 billion-year-old solar system took shape. As both planets are gas giants, they could offer astronomers an opportunity to study the real-time evolution of planets like Jupiter and Saturn.

Building a 'sandcastle' world

One of these extrasolar planets, or "exoplanets," YSES-1 c, has a mass around 14 times the mass of Jupiter. On YSES-1 c, this silica matter is located in clouds in its atmosphere, which gives it a reddish hue and creates sandy rains that fall inward towards its core.

We guess that the future Darth Vader didn't build too many sandcastles in his youth, but that process is analogous to the formation of sandy matter that YSES-1 b is undergoing.

Already possessing a mass around six times that of Jupiter, the still-forming sandcastle planet YSES-1 b is surrounded by a flattened cloud or "circumplanetary disk" that is supplying it with building materials, including silicates.

Not only is this the first direct observation of silica clouds (specifically iron-rich pyroxene or a combination of bridgmanite and forsterite) high in the atmosphere of an exoplanet, but it is also the first time silicates have been detected in a circumplanetary disk.

The JWST was able to make such detailed direct observations of both planets thanks to the great distances at which they orbit their parent star, which is equivalent to between 5 and 10 times the distance between the sun and its most distant planet, the ice giant Neptune.

Though this technique is still restricted to a small number of planets beyond the solar system, this research exemplifies the capability of the JWST to provide high-quality spectral data for exoplanets. This opens the possibility of studying both the atmospheres and circumplanetary environments of exoplanets in far greater detail.

Source: www.space.com

Share:

No comments:

Post a Comment

Patreon Page: CURRENT AFFAIRS DAILY UPDATES

Translate

Popular Posts

Blog Archive

Recent Posts