Microplastics Found in Blood Clots in Heart, Brain and Legs.

Earlier this year, we got news from a landmark study that microplastics – tiny shards of plastic shed from larger chunks – had been found inside more than 50 percent of fatty deposits from clogged arteries. It was the first data of its kind to draw a link between microplastics and their impact on human health.

Now, a new study from researchers in China reports finding microplastics in blood clots surgically removed from arteries in the heart and brain, and deep veins in the lower legs.

It's only a small study, of 30 patients – not nearly as many as the 257 patients followed for 34 months in the arterial plaque study published in March.

But similar to how the Italian-led team found the presence of microplastics in plaques raised people's subsequent risk of heart attack or stroke, the Chinese team also found a potential association between levels of microplastics in blood clots and disease severity.

The 30 patients involved in the study had surgery to remove blood clots after experiencing a stroke, heart attack, or deep vein thrombosis, a condition where clots form in deep veins, typically of the legs or pelvis.

Aged 65 years old on average, patients had various health histories and lifestyles such as smoking, alcohol use, high blood pressure, or diabetes. They used plastic products daily, and were roughly split between rural and urban areas.

Microplastics of various shapes and sizes were detected using chemical analysis techniques in 24 of the 30 blood clots studied, at varying concentrations.

Testing also identified the same types of plastics as those detected in the Italian-led study of arterial plaques: polyvinyl chloride (PVC) and polyethylene (PE). This isn't surprising as PVC (often used in construction) and PE (primarily used in bottles and shopping bags) are two of the most commonly produced plastics.

The new study also detected polyamide 66 in the clots, a common plastic used in fabric and textiles. Of the 15 types identified in the study, PE was the most common plastic, making up 54 percent of the particles analyzed.

The researchers also found that people with higher levels of microplastics in their blood clots also had higher D-dimer levels than patients with no microplastics detected in thrombi.

Source: www.sciencealert.com


No comments:

Post a Comment




Popular Posts

Blog Archive

Recent Posts